KATA PENGANTAR
Puji syukur kita panjatkan kehadirat Allah Yang Maha Esa atas segala rahmat dan karunia-Nya sehingga, makalah ini dapat kami selesaikan sesuai yang diharapkan. Dalam makalah ini kami membahas “Negara dan Konstitusi”, suatu permasalahan pokok yang mengakibatkan terjadinya perdebatan, yaitu perumusan amandemen UUD 1945 yang multi tafsir.
Makalah ini dibuat dalam rangka untuk mengetahui sejarah ketatanegaraan, pandangan terhadap amandemen UUD 1945, serta catatan – catatan terhadap hasil perubahan.
Demikian makalah ini saya buat semoga bermanfaat bagi penulis khusunya dan bagi pembaca pada umumnya.
Jakarta, 10 November 2009
Penyusun
Teguh Purnomo
5115092492
Sabtu, 05 Desember 2009
soal latihan SPL dan Pers.Kuadrat
1. Ani , nia dan ina pergi bersama – sama ke toko buah . ani membeli 2kg apel , 3kg anggur dan 1kg jeruk dengan harga Rp.67.000,00. Nia membelli 3kg apel, 1kg anggur dan 1kg jeruk dengan harga Rp.61.000,00. Ina membeli 1kg apel m 3kg anggur dan 2kg jeruk dengan harga Rp. 80.000,00. Harga 1 kg apel , 1kg anggur dan 4kg jeruk seluruhnya adalah …
a. Rp 37.000,00 d. Rp 55.000,00
b. Rp 44.000,00 e. Rp 58.000,00
c. Rp 51.000,00
2. Nilai z yang memenuhi system persamaan
x + z =2 x + y + z = 6 x – y + 2z = 5
a. 0 b. 1 c. 2 d. 3 e. 4
3. Himpunan penyelesaian sistem persamaan
6/x +3/y =21 7/x – 4/y = 2
Adalah { x, y }. Nilai 6xy = …
a. 1/6
b. b. 1/5
c. c. 1
d. d. 6
e. e. 36
4. Perbandingan umur ali dan badu 6 tahun yang lalu adalah 5 : 6. Hasil kali umur keduanya sekarang adalah 1.512. umur ali sekarang adalah …
a. 30 tahun c. 36 tahun e. 42 tahun
b. 35 tahun d. 38 tahun
5. Nilai ( x + y + z ) yang memenuhi sistem persamaan
X + 2y + 3z = 11
2x – y – 3z = -4
-x + 2y + z = -3
Adalah …
a. 1
b. b. 3
c. c. 5
d. d. 6
e. e. 9
a. Rp 37.000,00 d. Rp 55.000,00
b. Rp 44.000,00 e. Rp 58.000,00
c. Rp 51.000,00
2. Nilai z yang memenuhi system persamaan
x + z =2 x + y + z = 6 x – y + 2z = 5
a. 0 b. 1 c. 2 d. 3 e. 4
3. Himpunan penyelesaian sistem persamaan
6/x +3/y =21 7/x – 4/y = 2
Adalah { x, y }. Nilai 6xy = …
a. 1/6
b. b. 1/5
c. c. 1
d. d. 6
e. e. 36
4. Perbandingan umur ali dan badu 6 tahun yang lalu adalah 5 : 6. Hasil kali umur keduanya sekarang adalah 1.512. umur ali sekarang adalah …
a. 30 tahun c. 36 tahun e. 42 tahun
b. 35 tahun d. 38 tahun
5. Nilai ( x + y + z ) yang memenuhi sistem persamaan
X + 2y + 3z = 11
2x – y – 3z = -4
-x + 2y + z = -3
Adalah …
a. 1
b. b. 3
c. c. 5
d. d. 6
e. e. 9
Sistem Persamaan Linear dan Kuadrat
Sistem Persamaan Linear dan Kuadrat
Sistem Persamaan Linear dan Kuadrat Eksplisit
SPLK Eksplisit
Bentuk umum SPLK eksplisit ditulis sebagai berikut:
dengan a, b, p, q, dan r merupakan bilangan-bilangan real.
Langkah-langkah untuk menentukan himpunan penyelesaian SPLK Eksplisit adalah sebagai berikut:
1. Substitusikan persamaan linear y = ax + b ke persamaan kuadrat y = px2 + qx + r, diperoleh
ax + b = px2 + qx + r
px2 + (q - a)x + (r - b) = 0, dengan menggunakan pemfaktoran atau rumus ABC diperoleh nilai-nilai x (jika ada).
2. Nilai-nilai x yang didapat dari langkah (1) disubtitusikan ke persamaan y = ax + b sehingga diperoleh nilai y. Pasangan nilai (x, y) merupakan himpunan penyelesaian SPLK.
Banyak anggota himpunan penyelesaian pada persamaan kuadrat px2 + (q - a)x + (r - b) = 0 dapat ditentukan dengan menggunakan diskriminan yang dinotasikan dengan D, dimana D = b2 - 4ac.
Diskriminan dari px2 + (q - a)x + (r - b) = 0 adalah D = (q - a)2 - 4p(r - b).
Jika D > 0 maka SPLK mempunyai dua anggota himpunan penyelesaian.
Jika D = 0 maka SPLK mempunyai satu anggota himpunan penyelesaian.
Jika D < 0 maka SPLK tidak mempunyai anggota himpunan penyelesaian.
Pasangan nilai (x, y) yang merupakan himpunan penyelesaian SPLK dapat ditafsirkan secara Geometri sebagai koordinat titik potong antara garis y = ax + b dengan parabola y = px2 + qx + r. Kedudukan garis terhadap parabola dapat ditentukan dengan nilai diskriminan D = (q- a)2 - 4p(r - b).
Jika D > 0 maka garis memotong parabola di dua titik yang berlainan.
Jika D = 0 maka garis memotong parabola tepat di satu titik atau dikatakan garis menyinggung parabola
Jika D < 0 maka garis tidak memotong maupun menyinggung parabola.
Kedudukan garis terhadap parabola dapat digambarkan sebagai berikut.
Contoh 1
Tentukan banyak anggota himpunan penyelesaian SPLK di bawah ini.
a. y = x + 7
y = x2 + 4x - 12
Jawab :
Substitusikan persamaan y = x + 7 ke persamaan y = x2 + 4x - 12 diperoleh
x + 7 = x2 + 4x - 12
x2 + 3x - 19 = 0
D = 32 - 4(1)(-19)
D = 9 + 76
D = 85
Karena D > 0, jadi SPLK mempunyai 2 anggota himpunan penyelesaian.
b. y = -2x + 5
y = x2 + 6x + 21
Jawab :
Substitusikan persamaan y = -2x + 5 ke persamaan y = x2 + 6x + 21 diperoleh
-2x + 5 = x2 + 6x + 21
x2 + 8x + 16 = 0
D = 82 - 4(1)( 16)
D = 64 - 64
D = 0
Karena D = 0, jadi SPLK mempunyai 1 anggota himpunan penyelesaian.
c. y = 3x - 4
y = x2 + 6x + 9
Jawab :
Substitusikan persamaan y = 3x - 4 ke persamaan y = x2 + 6x + 9 diperoleh
3x - 4 = x2 + 6x + 9
x2 + 3x + 13 = 0
D = 32 - 4(1)( 13)
D = 9 - 52
D = -43
Karena D < 0, jadi SPLK tidak mempunyai anggota himpunan penyelesaian.
Contoh 2
Tentukan himpunan penyelesaian SPLK y = 2x + 8
y = x2 + 4x
Jawab:
Substitusikan persamaan y = 2x + 8 ke persamaan y = x2 + 4x, diperoleh
2x + 8 = x2 + 4x
x2 + 2x - 8 = 0
(x + 4)(x - 2) = 0
x = -4 atau x = 2
x = -4 y = 2(-4) + 8 = 0
x = 2 y = 2(2) + 8 = 12
Himpunan penyelesaian ={(-4, 0), (2, 12)}
Contoh 3
Diketahui persamaan garis y = x + 2 dan persamaan parabola y = x2 - 2x - 8.
Tentukan: a. koordinat titik potong antara garis dan parabola
Jawab:
a. Substitusikan persamaan garis y = x + 2 ke persamaan parabola y = x2 - 2x - 8, diperoleh
x + 2 = x2 - 2x - 8
x2 - 3x - 10 = 0
(x + 2)(x - 5) = 0
x = -2 atau x = 5
x = -2 y = -2 + 2 = 0
x = 5 y = 5 + 2 = 7
Koordinat titik potong antara garis dan parabola adalah (-2, 0) dan (5, 7)
Sistem Persamaan Linear dan Kuadrat Eksplisit
SPLK Eksplisit
Bentuk umum SPLK eksplisit ditulis sebagai berikut:
dengan a, b, p, q, dan r merupakan bilangan-bilangan real.
Langkah-langkah untuk menentukan himpunan penyelesaian SPLK Eksplisit adalah sebagai berikut:
1. Substitusikan persamaan linear y = ax + b ke persamaan kuadrat y = px2 + qx + r, diperoleh
ax + b = px2 + qx + r
px2 + (q - a)x + (r - b) = 0, dengan menggunakan pemfaktoran atau rumus ABC diperoleh nilai-nilai x (jika ada).
2. Nilai-nilai x yang didapat dari langkah (1) disubtitusikan ke persamaan y = ax + b sehingga diperoleh nilai y. Pasangan nilai (x, y) merupakan himpunan penyelesaian SPLK.
Banyak anggota himpunan penyelesaian pada persamaan kuadrat px2 + (q - a)x + (r - b) = 0 dapat ditentukan dengan menggunakan diskriminan yang dinotasikan dengan D, dimana D = b2 - 4ac.
Diskriminan dari px2 + (q - a)x + (r - b) = 0 adalah D = (q - a)2 - 4p(r - b).
Jika D > 0 maka SPLK mempunyai dua anggota himpunan penyelesaian.
Jika D = 0 maka SPLK mempunyai satu anggota himpunan penyelesaian.
Jika D < 0 maka SPLK tidak mempunyai anggota himpunan penyelesaian.
Pasangan nilai (x, y) yang merupakan himpunan penyelesaian SPLK dapat ditafsirkan secara Geometri sebagai koordinat titik potong antara garis y = ax + b dengan parabola y = px2 + qx + r. Kedudukan garis terhadap parabola dapat ditentukan dengan nilai diskriminan D = (q- a)2 - 4p(r - b).
Jika D > 0 maka garis memotong parabola di dua titik yang berlainan.
Jika D = 0 maka garis memotong parabola tepat di satu titik atau dikatakan garis menyinggung parabola
Jika D < 0 maka garis tidak memotong maupun menyinggung parabola.
Kedudukan garis terhadap parabola dapat digambarkan sebagai berikut.
Contoh 1
Tentukan banyak anggota himpunan penyelesaian SPLK di bawah ini.
a. y = x + 7
y = x2 + 4x - 12
Jawab :
Substitusikan persamaan y = x + 7 ke persamaan y = x2 + 4x - 12 diperoleh
x + 7 = x2 + 4x - 12
x2 + 3x - 19 = 0
D = 32 - 4(1)(-19)
D = 9 + 76
D = 85
Karena D > 0, jadi SPLK mempunyai 2 anggota himpunan penyelesaian.
b. y = -2x + 5
y = x2 + 6x + 21
Jawab :
Substitusikan persamaan y = -2x + 5 ke persamaan y = x2 + 6x + 21 diperoleh
-2x + 5 = x2 + 6x + 21
x2 + 8x + 16 = 0
D = 82 - 4(1)( 16)
D = 64 - 64
D = 0
Karena D = 0, jadi SPLK mempunyai 1 anggota himpunan penyelesaian.
c. y = 3x - 4
y = x2 + 6x + 9
Jawab :
Substitusikan persamaan y = 3x - 4 ke persamaan y = x2 + 6x + 9 diperoleh
3x - 4 = x2 + 6x + 9
x2 + 3x + 13 = 0
D = 32 - 4(1)( 13)
D = 9 - 52
D = -43
Karena D < 0, jadi SPLK tidak mempunyai anggota himpunan penyelesaian.
Contoh 2
Tentukan himpunan penyelesaian SPLK y = 2x + 8
y = x2 + 4x
Jawab:
Substitusikan persamaan y = 2x + 8 ke persamaan y = x2 + 4x, diperoleh
2x + 8 = x2 + 4x
x2 + 2x - 8 = 0
(x + 4)(x - 2) = 0
x = -4 atau x = 2
x = -4 y = 2(-4) + 8 = 0
x = 2 y = 2(2) + 8 = 12
Himpunan penyelesaian ={(-4, 0), (2, 12)}
Contoh 3
Diketahui persamaan garis y = x + 2 dan persamaan parabola y = x2 - 2x - 8.
Tentukan: a. koordinat titik potong antara garis dan parabola
Jawab:
a. Substitusikan persamaan garis y = x + 2 ke persamaan parabola y = x2 - 2x - 8, diperoleh
x + 2 = x2 - 2x - 8
x2 - 3x - 10 = 0
(x + 2)(x - 5) = 0
x = -2 atau x = 5
x = -2 y = -2 + 2 = 0
x = 5 y = 5 + 2 = 7
Koordinat titik potong antara garis dan parabola adalah (-2, 0) dan (5, 7)
Langganan:
Komentar (Atom)
